PathFinder: A Pattern-Based Packet Classifier
نویسندگان
چکیده
This paper describes a pattern-based approach to building packet classifiers. One novelty of the approach is that it can be implemented efficiently in both software and hardware. A performance study shows that the software implementation is about twice as fast as existing mechanisms, and that the hardware implementation is currently able to keep up with OC-12 (622Mbps) network links and is likely to operate at gigabit speeds in the near future.
منابع مشابه
Cross-layer Packet-dependant OFDM Scheduling Based on Proportional Fairness
This paper assumes each user has more than one queue, derives a new packet-dependant proportional fairness power allocation pattern based on the sum of weight capacity and the packet’s priority in users’ queues, and proposes 4 new cross-layer packet-dependant OFDM scheduling schemes based on proportional fairness for heterogeneous classes of traffic. Scenario 1, scenario 2 and scenario 3 lead r...
متن کاملClassifier Ensemble Framework: a Diversity Based Approach
Pattern recognition systems are widely used in a host of different fields. Due to some reasons such as lack of knowledge about a method based on which the best classifier is detected for any arbitrary problem, and thanks to significant improvement in accuracy, researchers turn to ensemble methods in almost every task of pattern recognition. Classification as a major task in pattern recognition,...
متن کاملFeature Extraction to Identify Network Traffic with Considering Packet Loss Effects
There are huge petitions of network traffic coming from various applications on Internet. In dealing with this volume of network traffic, network management plays a crucial rule. Traffic classification is a basic technique which is used by Internet service providers (ISP) to manage network resources and to guarantee Internet security. In addition, growing bandwidth usage, at one hand, and limit...
متن کاملAutomatic Sleep Stages Detection Based on EEG Signals Using Combination of Classifiers
Sleep stages classification is one of the most important methods for diagnosis in psychiatry and neurology. In this paper, a combination of three kinds of classifiers are proposed which classify the EEG signal into five sleep stages including Awake, N-REM (non-rapid eye movement) stage 1, N-REM stage 2, N-REM stage 3 and 4 (also called Slow Wave Sleep), and REM. Twenty-five all night recordings...
متن کاملA Comparison of Pattern Classification Approaches for Structural Damage Identification
A structural damage identification approach based on wavelet packet decomposition (WPD) and random forests (RF) was proposed and compared with other pattern classification approachs. The main procedure involves extracting energy features from vibration acceleration data through wavelet packet decomposition and then using these features as input for a RF classifier. The experiment was carried on...
متن کامل